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Vibration of membranes is important in the generation and reception of sound [1].
The governing Helmholtz equation also describes simply-supported vibrating
plates and electromagnetic wave guides [2]. The solution methods and the variety
of boundary shapes studied were reviewed by Ng [3]. The purpose of this note is
to present the results for the moon-shaped and lens-shaped membranes which have
never been investigated before.

Let the boundary of the membrane be described by two circular arcs. Let the
left arc be described by

x2 + y2 =1, −1E xE cQ 1, (1)

where all lengths have been normalized by the radius. The right arc is given by

b(x2 + y2)+ [1− (c+ b)2]x+(c+ b)[c(c+ b)−1]=0, (2)

where c is the horizontal co-ordinate of the intersecting points (c, 2z1− c2) and
(b+ c, 0) is the midpoint of the right arc. When b=0 the right arc is a vertical
line segment at x= c. Figure 1 shows the membrane is lens-shaped when bq 0
and moon-shaped when bQ 0.

The governing equation is

wxx +wyy + k2w=0, (3)

where w(x, y) is the normalized displacement, and k is the frequency normalized
by (tension per length/density)1/2/length. On the boundary, w=0. The
fundamental frequency is the lowest eigenvalue k.

Figure 1. The geometry: (a) lens-shaped, (b) moon-shaped membranes.
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Due to the complex boundary, there is no closed-form solution and finite
differences or elements are very tedious. The variational method described by
Weinstock [4] will be used. The solution of equation (3) minimizes the integral

I=g g (w2
x +w2

y ) ds, (4)

with the constraint

g g w2 ds=1, (5)

where s is the area bounded by the membrane boundary. One approximates w by
the expansion

w(x, y)= (x2 + y2 −1){b(x2 + y2)+ [1− (c+ b)2]x+(c+ b)[c(c+ b)−1]}

×(a1 + a2x+ a3x2 + a4y2 + a5x3 + a6xy2 + a7x4 + a8x2y2 + a9y4 + · · ·)

0 s
N

1

aifi (x, y). (6)

Here w satisfies the zero boundary conditions and the series is even in y, complete,
and converge within the circle x2 + y2 =1. N can be taken as 1, 2, 4, 6, 9 etc. The
eigenvalue k is obtained from

=Gij − k2Lij ==0, (7)

where

Gij =g g (fixfjx +fiyfjy ) ds, Lij =g g fifj ds. (8, 9)

First one tests the accuracy of the present method using the results for the
semicircular membrane, obtained by separation of variables [1]. The exact
eigenvalue is the first zero of the Bessel function J1, i.e., 3·8317. The present
numerical values for this case, using different numbers of terms, are given in
Table 1.

One sees that N=4 is sufficient to guarantee an error less than 0·1%, and
sometimes N=6 has been used to assure convergence.

The range of parameters used is −1Q cQ 1 and −1−cQ bQmin(1− c,
z1− c2). Note that cQ 0, bez1− c2 cases are redundant since one can use the
mirror image of the cq 0 cases.

Table 2 lists the fundamental frequency for the circular segment membrane
(b=0).

The results for the moon-shaped (bq 0) and lens-shaped (bQ 0) membranes are
plotted in Figure 2.
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T 1

Convergence of variational approach

N 1 2 4 6 exact

k 4·000 3·883 3·833 3·832 3·8317

T 2

Fundamental frequency for the circular segment membrane (b=0)

c −1 −0·8 −0·6 −0·4 −0·2 0 0·2 0·4 0·6 0·8 1

k a 17·028 8·780 6·026 4·651 3·832 3·295 2·924 2·665 2·497 2·405

Figure 2. Normalized period 1/k as a function of b and c.

The normalized period (1/k) is plotted, since the normalized frequency k would
span too large a range. The bq 0 curves begins at z1− c2 and ends at 1− c,
where the period is 1/2·405.
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